Abstract
Simple SummaryTabanidae suck the blood of humans and animals, are important biological vectors for the transmission of diseases, and are of considerable economic and medical significance. However, current knowledge about the mitochondrial genome of this family is limited. Therefore, six newly completed mitochondrial genomes of four genera of Tabanidae (Haematopota turkestanica, Chrysops vanderwulpi, Chrysops dissectus, Tabanus chrysurus, Tabanus pleskei, and Hybomitra sp. species) were sequenced and analyzed. The results show that the six newly mitochondrial genomes have quite similar structures and features. Phylogeny was inferred by analyzing the 13 amino acid sequences coded by mitochondrial genes of 22 mitogenomes (all available complete mitochondrial genomes of tabanidae). Bayesian inference, maximum likelihood trees, and maximum parsimony inference analyses all showed consistent results. This study supports the concept of monophyly of all groups, ratifies the current taxonomic classification, and provides useful genetic markers for studying the molecular ecology, systematics, and population genetics of Tabanidae.Tabanidae suck the blood of humans and animals, are important biological vectors for the transmission of diseases, and are of considerable economic and medical significance. However, current knowledge about the mitochondrial genome of this family is limited. More complete mitochondrial genomes of Tabanidae are essential for the identification and phylogeny. Therefore, this study sequenced and analyzed six complete mitochondrial (mt) genome sequences of four genera of Tabanidae for the first time. The complete mt genomes of the six new sequences are circular molecules ranging from 15,851 to 16,107 base pairs (bp) in size, with AT content ranging from 75.64 to 77.91%. The six complete mitochondrial genomes all consist of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (RRNA), 22 transfer RNA genes (tRNAs), and a control region, making a total of 37 functional subunits. ATT/ATG was the most common start codon, and the stop codon was TAA of all PCGS. All tRNA except tRNA Ser1 had a typical clover structure. Phylogeny was inferred by analyzing the 13 concatenated amino acid sequences of the 22 mt genomes. Bayesian inference, maximum-likelihood trees, and maximum-parsimony inference analyses all showed consistent results. This study supports the concept of monophyly of all genus, ratifies the current taxonomic classification, and provides effective genetic markers for molecular classification, systematics, and genetic studies of Tabanidae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.