Abstract

Culture-independent analysis of the gut of a wood-boring insect, Anoplophora glabripennis (Coleoptera: Cerambycidae), revealed a consistent association between members of the fungal Fusarium solani species complex and the larval stage of both colony-derived and wild A. glabripennis populations. Using the translation elongation factor 1-alpha region for culture-independent phylogenetic and operational taxonomic unit (OTU)-based analyses, only two OTUs were detected, suggesting that genetic variance at this locus was low among A. glabripennis-associated isolates. To better survey the genetic variation of F. solani associated with A. glabripennis, and establish its phylogenetic relationship with other members of the F. solani species complex, single spore isolates were created from different populations and multi-locus phylogenetic analysis was performed using a combination of the translation elongation factor alpha-1, internal transcribed spacer, and large subunit rDNA regions. These analyses revealed that colony-derived larvae reared in three different tree species or on artificial diet, as well as larvae from wild populations collected from three additional tree species in New York City and from a single tree species in Worcester, MA, consistently harbored F. solani within their guts. While there is some genetic variation in the F. solani carried between populations, within-population variation is low. We speculate that F. solani is able to fill a broad niche in the A. glabripennis gut, providing it with fungal lignocellulases to allow the larvae to grow and develop on woody tissue. However, it is likely that many F. solani genotypes could potentially fill this niche, so the relationship may not be limited to a single member of the F. solani species complex. While little is known about the role of filamentous fungi and their symbiotic associations with insects, this report suggests that larval A. glabripennis has developed an intimate relationship with F. solani that is not limited by geographic location or host tree.

Highlights

  • The Asian longhorned beetle (Anoplophora glabripennis) is an invasive, wood-boring insect with a relatively broad host range that includes over 21 deciduous tree species [1]

  • 153 were derived from insects from the Penn State research colony, with 39 clones from insects reared on sugar maple, 33 clones from insects reared on pin oak, 46 clones from insects reared on callery pear, and 35 clones from insects reared on cellulose based artificial diet (Table 2)

  • Based on operational taxonomic unit (OTU) analysis, using the furthest neighbor algorithm, all TEF1-α sequences derived from culture-independent methods were categorized into two OTUs; 268 TEF1-α sequences were placed into OTU1, while only nine TEF1-α sequences were placed into OTU2

Read more

Summary

Introduction

The Asian longhorned beetle (Anoplophora glabripennis) is an invasive, wood-boring insect with a relatively broad host range that includes over 21 deciduous tree species [1]. Most cerambycids are constrained to feeding in stressed, dying, or dead trees and are reported to digest cellulose by ingesting enzymes produced by wood-degrading fungi that colonize infected wood [4,5]. A. glabripennis, feed and grow in the inner wood of a variety of healthy hardwood tree species where woody, intractable components, including lignin and cellulose, have not been pre-digested by wood-degrading fungi and, instead, are internally digested [6,7,8,9]. Cellulose, hemicellulose, and small amounts of protein are often cross-linked to lignin in hardwood tree species. Circumventing the lignin barrier is paramount for accessing hexose and pentose sugars present in cellulose and hemicellulose polymers and for protein acquisition

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.