Abstract

The aim of this study was to establish the phylogenetic relationships of trypanosomes present in blood samples of Bolivian Carollia bats. Eighteen cloned stocks were isolated from 115 bats belonging to Carollia perspicillata (Phyllostomidae) from three Amazonian areas of the Chapare Province of Bolivia and studied by xenodiagnosis using the vectors Rhodnius robustus and Triatoma infestans (Trypanosoma cruzi marenkellei) or haemoculture (Trypanosoma dionisii). The PCR DNA amplified was analyzed by nucleotide sequences of maxicircles encoding cytochrome b and by means of the molecular size of hyper variable regions of minicircles. Ten samples were classified as Trypanosoma cruzi marinkellei and 8 samples as Trypanosoma dionisii. The two species have a different molecular size profile with respect to the amplified regions of minicircles and also with respect to Trypanosoma cruzi and Trypanosoma rangeli used for comparative purpose. We conclude the presence of two species of bat trypanosomes in these samples, which can clearly be identified by the methods used in this study. The presence of these trypanosomes in Amazonian bats is discussed.

Highlights

  • Short-tailed bats of the genus Carollia are widely distributed in the New World tropics

  • Molecular phylogenetic data based on the SSU rRNA indicated that the broad host-range trypanosome Trypanosoma rangeli and the rat trypanosome Trypanosoma cornohini should be reclassified in the subgenus Schizotrypanum [18]

  • We show in this work that T. cruzi is different from T.c. marinkellei and T. dionisii in the minicircle variable region size

Read more

Summary

Introduction

Short-tailed bats of the genus Carollia are widely distributed in the New World tropics. The type species of the subgenus Schizotrypanum is T. cruzi, which infects man and a wide variety of mammalian hosts. T. dionisii, T.c. marinkellei and T. cruzi, belonging to the subgenus Schizotrypanum, can invade mammalian cells. These Trypanosoma species display distinct surface profiles but invade host cells through a common mechanism involving lysosome mobilization to the site of parasite entry [15]. T. rangeli are kinetoplastid protozoa which have been largely recognized and defined in several Latin American countries in relation to T. cruzi, because the two trypanosome species are frequently found in mixed infections in triatominae vectors, humans and a variety of wild and domestic mammals [19]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call