Abstract

BackgroundOne set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function.ResultsHere we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication.ConclusionsOur data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved.

Highlights

  • One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation

  • The first Dmrt gene to be proposed and identified was Drosophila melanogaster Doublesex (Dsx), a gene that is involved in sex determination in the fly ([2] Hildreth 1965, [3] Burtis and Baker 1989), but Dmrt genes represent an ancestral class of developmental genes that must have evolved before the appearance of bilaterian animals: they are present in cnidarians, placozoans and ctenophores ([4] Miller et al 2003, [5] Wexler et al 2014, [6] Chen et al 2016)

  • Sequence analysis We identified three Dmrt genes in Tribolium

Read more

Summary

Introduction

One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt genes. Neither expression nor function of the other Dmrt genes has been investigated in detail even in Drosophila, and research on panarthropod (i.e. arthropods, tardigrades and onychophorans) Dmrt genes (including Dsx) outside Pancrustacea (i.e. crustaceans and insects together) is almost completely lacking. Studies on Dsx and other Dmrt genes in Pancrustacea mostly focus on their role in adults or sub-adults, and virtually no data exist on their expression patterns or potential functions during embryogenesis, there are some studies investigating transcript levels in embryos and embryonic tissues, but without providing any detailed data on transcript location (e.g. [29] Morrow et al 2014)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call