Abstract

Thermoplasma acidophilum, a thermophilic mycoplasma, has several unusual features suggesting a possible relationship to eukaryotic cells. One feature is a histone-like protein that is associated with the DNA, condensing it into subunits similar to those in eukaryotic chromatin. A second feature is an association of cytoplasmic proteins that resembles eukaryotic actin and myosin. These two components are widely distributed in different groups of eukaryotic cells, but are typically lacking in prokaryotic cells. Furthermore, T. acidophilum lacks cytochromes and respires by enzymes that apparently are not coupled to oxidative phosphorylation. This primitive type of respiration resembles that of microbodies, another feature which is represented in the cytoplasm of all groups of eukaryotic cells. Furthermore, since T. acidophilum lacks a cell wall and appears to have a primitive correlate of endocytosis, it would appear to be mechanically capable of acquiring a symbiotic mitochondrion. Thus, our observations are consistent with the symbiotic hypothesis for the origin of eukaryotic cells. We suggest that an organism similar to T. acidophilum was the host cell for the original symbiosis, becoming the nucleus and cytoplasm of modern eukaryotic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.