Abstract

AbstractCurrent thinking regarding the possible origins and probable evolutionary histories of meteorites is summarized. Selected data concerning the composition, petrology and other characteristics of the CI and CM groups of stony meteorites in which layered minerals principally occur are then presented. Layered compounds, mainly phyllosilicates, are shown to form a major part of the fine-grained matrix of the CI and CM meteorites, which are classified as carbonaceous chondrites. The results of recent investigations of matrix mineralogy are reviewed, with particular emphasis on the findings of electron microscopy. Several forms of Fe-Mg-serpentine have been identified as the principal phyllosilicates. ‘Poorly-characterized phases’ in CM meteorites have proved to be tochilinite and intergrowths of tochilinite with serpentines. The results generally indicate that the phyllosilicates and most other matrix minerals formed by aqueous alteration in the regoliths of the CI and CM parent bodies; but there is isotopic evidence for the incorporation of components and possibly mineral grains which predate the solar nebula. It is concluded that more detailed chemical and mineralogical information about the phyllosilicates and associated minerals will enable useful constraints to be placed on the possible identities of their precursors and the environments in which both they and the matrix minerals formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.