Abstract
The use of freely suspended cells of microalgae culture to treat wastewater is of current global interest because of their effective photosynthetic uptake of pollutants, carbon dioxide sequestration, and biomass production for desirable high value-products. Biomass immobilization is a promising option to overcome the harvesting problem that is encountered when using free-cells upon completion of the wastewater treatment process. In this study, Nannochloropsis sp. cells were immobilized in sodium alginate beads to eliminate the harvesting limitation. The microalgal beads were further cultivated in treated palm oil mill effluent (TPOME) for removal of chemical oxygen demand (COD). The effect of POME concentration on COD removal and microalgal cells growth was investigated, respectively. It was found that the maximum biomass concentration of 1.23 g/L and COD removal of 55% from 10% POME were achieved after 9 days. An increment of POME concentration did not cause any improvement to the treatment efficiency due to the inhibitory effect of high initial COD of POME on the biomass concentration and was further responsible for low COD removal. The immobilized cells showed a systematic growth, demonstrating that the beads are biocompatible as immobilization carrier. In conclusion, the immobilized microalgal cells could be a viable alternative technology system for POME treatment as well as biomass production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.