Abstract

Combinatorial process development for rationalized recycling of nutrients employing microalgae may provide realistic solutions to both environment management and energy generation. The present study was performed to investigate nutrient recycling potential of microalgal strains viz. Anabaena ambigua, Chlorella pyrenoidosa and Scenedesmus abundans in terms of biomass productivity and specific growth rate using textile wastewater as a nutrient source at different dilutions (25, 50, 75, 100%). Biomass production kinetics revealed that alga could grow even up to 100% textile wastewater. Comparative phycoremediation potential was evaluated for 25 days employing 75% textile wastewater under batch conditions. The microalgal species were observed to effectively reduce the chloride, nitrate and phosphate concentrations up to 61%, 74.43% and 70.79%, respectively. Maximum chemical oxygen demand reduction efficiency was observed employing S. abundans (< 85%). Spectral analysis revealed potentiality of applying microalgae for textile wastewater remediation and also provided insight into the possible mechanism involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.