Abstract
Crude oil exploitation in the Niger Delta, particularly in Ogoniland, brought environmental devastation occasioned by petroleum pollution, as farmlands and water sources were destroyed. This study was designed to remediate crude oil contaminated water obtained from water sources in Ogoniland using two green algal species. Thirty water samples were collected from eight different water sources. The samples were analysed for total petroleum hydrocarbon (TPH) using gas chromatography/flame ionization detector (GC/FID). Algal samples were collected from Ogba River and at wetland in Military Hospital Benin, Edo State, Nigeria. The algal samples were identified, screened, optimized and grown in Bold basal medium. Results obtained from the determination of TPH showed that the infiltrated pond (Exc) sample site had the highest concentration among all the sites sampled with 198.8329 μg/L, R2 with 134.1296 μg/L, R1 with 108.9394 μg/L, R3 with 105.8011 μg/L, R4 with 98.442 8 μg/L, the hand-dug wells (Wll) had 9.6586 μg/L while the borehole (Bhl) had the lowest with 1.8310 μg/L. It was deduced that pollution of water sources was principally because of pollutants washed from the soil environment into the open surface water sources via run-off rather than through the seepage from the underground aquifers, incriminating illegal oil mining and artisanal refining. Results obtained from the analysis of algal growth medium indicated that the two algal species were able to absorb the hydrocarbon contaminants, albeit at different rates, corresponding with the algal growth rate. Analysis of algal biomass after 4 weeks of remediation showed that from the initial 10.27 μg/20 mL added to the growth medium, the highest TPH mean value of 0.490 μg/20 mL was extracted from Ulothrix zonata (F.Weber & Mohr) Kützing biomass grown in Exc compared to 0.344 μg/20 mL of TPH extracted from Chlorella sorokiniana Shihira & R.W.Krauss grown in the same sample site. Also, Ulothrix zonata had higher TPH yield 0.023 μg/20 mL in Bhl compared to Chlorella sorokiniana 0.021 μg/20 mL of TPH from the same water source. This result indicated Ulothrix zonata had superior TPH phycoremediation ability to Chlorella sorokiniana. While the present study calls for deployment of the algal species for field trial, it is strongly recommended that crude oil pollution should be discouraged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.