Abstract

We report on two types of poly(methacrylic acid) (PMAA)-based hydrogel microcontainers (capsules) of cubical shape with distinctly different shape responses upon pH variations. The microcontainers were prepared as replicas of cubical inorganic templates through chemical cross-linking of hydrogen-bonded layer-by-layer (LbL) films. The two types of hollow hydrogels, a single-component (PMAA) and PMAA–poly(N-vinylpyrrolidone) (PMAA–PVPON), showed drastic differences in their shape response to pH variations. Cubical (PMAA)20 capsules turned into bulged sphere-like structures of the same size when transitioned from pH 3 to pH 8. In contrast, cubical (PMAA–PVPON)5 capsules retained their cubical shape at pH 3 while increasing in size at pH 8. The pH-triggered size change of cubical capsules was completely reversible. The difference in pH-triggered shape responses was rationalized through the difference in hydrogel rigidity expressed as the ratio of the polymer contour length between the neighboring cross-links to the persistence polymer length. The ratios of 22.7 and 2 for (PMAA) and (PMAA–PVPON) systems, respectively, suggested that the dual-component system is more rigid and therefore expands uniformly in all directions. We believe that the results provide new prospects for developing polymeric materials with predictable shape and size-changing properties for controlled drug delivery, cellular uptake, and pH-regulating transport behavior in microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.