Abstract

In the present work, a new family of pyrene (Py)-substituted phthalocyanines (Pcs), i.e., ZnPc-Py and H(2)Pc-Py, were designed, synthesized, and probed in light of their spectroscopic properties as well as their interactions with single-wall carbon nanotubes (SWNTs). The pyrene units provide the means for non-covalent functionalization of SWNTs via π-π interactions. Such a versatile approach ensures that the electronic properties of SWNTs are not impacted by the chemical modification of the carbon skeleton. The characterization of ZnPc-Py/SWNT and H(2)Pc-Py/SWNT has been performed in suspension and in thin films by means of different spectroscopic and photoelectrochemical techniques. Transient absorption experiments reveal photoinduced electron transfer between the photoactive components. ZnPc-Py/SWNT and H(2)Pc-Py/SWNT have been integrated into photoactive electrodes, revealing stable and reproducible photocurrents with monochromatic internal photoconversion efficiency values for H(2)Pc-Py/SWNT as large as 15 and 23% without and with an applied bias of +0.1 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.