Abstract

Phthalocyanine is a blue-colored macrocyclic compound with excellent anti-oxidant and lipid-peroxidation abilities due to its intermolecular π–π stacking structure. Antioxidants inhibit intracellular reactive oxygen species formation and decrease oxidation defense ability of the enzymes in diabetes management. The present study aimed to fabricate concanavalin A conjugated phthalocyanine-loaded cochleates (Formulation PhConA) as a glucose-sensitive lipidic system and estimate its efficacy in streptozotocin-induced male Sprague Dawley diabetic rats for 28 days. Thin-film hydration and trapping methods were used in the preparation of liposomes and cochleates, respectively, whereas the surface was modified for concanavalin A conjugation using EDAC: NHS (1:1). Formulation PhConA with rod-shaped structures showed particle size of 415.7 ± 0.46 nm, PdI value of 0.435 ± 0.09, encapsulation efficiency of 85.64 ± 0.34%, and 84.55 ± 0.29% release of phthalocyanine for 56 h. The circular dichroism study displayed a slight deviation after the conjugation effect of concanavalin A to cochleates. The in-vivo studies of the formulation PhConA improved the blood glucose levels along with defensive effect on the liver to overcome the hyperlipidemic effect. The rigid structure of cochleates prolongs the drug elimination from systemic circulation and extends its effect for a longer duration by decreasing the blood glucose level. Thus, the glucose-sensitive formulation PhConA showed significant improvement in diabetic rats within the period of 28 days by improving the oxidative defense and protecting the pancreatic β-cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call