Abstract
Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 μg L−1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.