Abstract
The transfer of specific proteins into living cells to enable the regulation of cell function or the tracking of the intracellular distribution of proteins is a desirable objective for offering a potential alternative to gene therapy. Here, protein/carbonate apatite complexes were successfully fabricated for intracellular delivery of functional proteins since the carbonate apatite being highly water solubility under an acidic condition could easily be dissolved in endosomes following endocytosis, thus releasing the electrostatically associated proteins in cytoplasm. In this study, we characterized protein/carbonate apatite complexes as an intracellular protein delivery system and we checked intracellular delivery of proteins by carbonate apatite nanoparticles in vitro. Fluorescently-labeled bovine serum albumin as a model protein was effectively delivered into nearly 100% of HeLa cells by the simple addition of protein/carbonate apatite complexes to the cells. Confocal microscopic imaging suggested the endosomal release of protein delivered with carbonate apatite. And intracellularly delivered ß-galactosidase did not lose its enzymatic activity. These results suggested that intracellular delivery system of protein using pH-sensitive carbonate apatite carrier with a very simple procedure will be a highly effective method to the biological and clinical researches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.