Abstract
PHD and RING finger domain-containing protein 1 (PHRF1) ubiquitinates TGIP (TG-interacting protein) and redistributes cPML (cytoplasmic variant of PML) to the cytoplasm to enhance TGF-β signaling by. It is unclear whether PHRF1 affects invasion and survival when both mutations of the activated oncogene Kras and inactivation of the tumor suppressor p53 are present. We knockout PHRF1 expression using Crispr-Cas9 editing in HCT116-p53-/- (KrasG13D/p53-/-) cells and analyzed the expression profile in HCT116-p53-/-PHRF1-/- cells. In contrast to lung cancer A549 (KrasG12S/p53wt) cells, the expression of Zeb1, a transcription factor for epidermal-mesenchymal transition (EMT), was not affected in PHRF1-knockout HCT116 p53-/- cells. Instead, SOX4 displayed a significant contribution to the impaired invasion in HCT116-p53-/-PHRF1-/- cells. Mechanistically, the C-terminal SRI domain of PHRF1 was required for both transwell invasion and SOX4 expression. The reintroduction of SOX4 into HCT116-p53-/- PHRF1-/- cells partially restored their invasive capability. This study sheds light on the role of PHRF1 in the invasion of colorectal cancer HCT116-p53-/- cells, which harbor the oncogenic KrasG13D mutation and lack p53. These findings provide novel insights regarding the role of PHRF1 in invasion by modulating SOX4 expression in colorectal cancer HCT116-p53-/- cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.