Abstract

High cervical quadriplegia is associated with high morbidity and mortality. Artificial respiration in these patients carries significant long-term risks such as infection, atelectasis, and respiratory failure. As phrenic nerve pacing has been proven to free many of these patients from ventilatory dependency, we hypothesized that neurotization of the phrenic nerve with the spinal accessory nerve (SAN) may offer one potential alternative to phrenic nerve stimulation via pacing and may be more efficacious and longer lasting without the complications of an implantable device. Ten cadavers (20 sides) underwent exposure of the cervical phrenic nerve and the SAN in the posterior cervical triangle. The SAN was split into anterior and posterior halves and the anterior half transposed to the ipsilateral phrenic nerve as it crossed the anterior scalene muscle. The mean distance between the cervical phrenic nerve and the SAN in the posterior cervical triangle was 2.5 cm proximally, 4 cm at a midpoint, and 6 cm distally. The range for these measurements was 2 to 4 cm, 3.5 to 5 cm, and 4 to 8.5 cm, respectively. The mean excess length of SAN available after transposition to the more anteromedially placed phrenic nerve was 5 cm (range 4 to 6.5 cm). The mean diameter of these regional parts of the spinal accessory and phrenic nerves was 2 and 2.5 mm, respectively. No statistically significant difference was found for measurements between sides. To our knowledge, using the SAN for neurotization to the phrenic nerve for potential use in patients with spinal cord injury has not been previously explored. Following clinical trials, these data may provide a mechanism for self stimulation of the diaphragm and obviate phrenic nerve pacing in patients with high cervical quadriplegia. Our study found that such a maneuver is technically feasible in the cadaver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call