Abstract

There has been a significant growth of interest in single nanopore ionic devices that could control the transport of ions and rectify ionic current. To improve the advance of relevant nanofluidic devices, a model is derived for the first time to investigate the zeta potential and ionic conductance of a cylindrical nanopore with overlapped electric double layer as functions of pH, salt concentration as well as the Stern layer capacitance. The developed model is validated by the experimental data of the nanopore conductance. Results show that in addition to the magnitudes, the relevant behaviors of zeta potential and conductance of the nanopore might be significantly influenced by the Stern layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call