Abstract
As deep learning models are getting popular, upgrading the retrieval-based content recommendation system to the learning-based system is highly demanded. However, efficiency is a critical issue. For article recommendation, an effective neural network which generates a good representation of the article content could prove useful. Hence, we propose PGA-Recommender, a phrase-guided article recommendation model which mimics the process of human behavior - first browsing, then guided by key phrases, and finally aggregating the gleaned information. As this can be performed independently offline, it is thus compatible with current commercial retrieval-based (keyword-based) article recommender systems. A total of six months of real logs - from Apr 2017 to Sep 2017 - were used for experiments. Results show that PGA-Recommender outperforms different state-of-the-art schemes including session-, collaborative filter-, and content-based recommendation models. Moreover, it suggests a diverse mix of articles while maintaining superior performance in terms of both click and view predictions. The results of A/B tests show that simply using the backward version of PGA-Recommender yields 40% greater click-through rates as compared to the retrieval-based system when deployed to a language of which we have zero knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.