Abstract
To address the deficiencies of benzophenone UV screens for preventing brightness reversion in high yield mechanical papers, we synthesized a new series of such materials with enhanced water solubility and compatibility with the lignocellulosic substrate. A series of 2,4-dihydroxybenzophenones (DHB) were synthesized containing various Mannich bases at the C3 position of one of its rings. They possess the UV-screening ability of o-hydroxylbenzophenones, and they also contain tertiary nitrogen atoms that may function as radical scavengers. Aqueous solutions of the hydrochloride salt of 3-(dimethylaminomethylene)-2,4-dihydroxylbenzophenone (1), when applied on bleached chemithermomechanical pulp (CTMP) sheets, were significantly more efficient in preventing photoyellowing than the original DHB applied on the sheets from ethanol-water solutions. This confirmed our original hypothesis that increasing the compatibility of the UV screen with the lignocellulosic matrix would increase its efficiency in preventing photoyellowing. Compound 1, however, was found to be somewhat more effective than its hydrochloride salt toward preventing photoyellowing. This was attributed to the synergistic action of the free tertiary aminic center attached on the molecule with its UV-screening ability. To comprehend further the various parameters that influence the photoyellowing inhibition performance of these compounds and DHB with bleached CTMP pulp fibers, a series of handsheets were prepared at different pH. The interactions of the protonated compound 1 with pulp fibers were then evaluated by studying their kinetics of absorption and desorption to and from the fiber matrix. This part of our study found that the adsorption of protonated Mannich derivatives of DHB onto pulp is most likely governed by a cation-exchange mechanism involving the cationic amine group with the sulfonic and carboxylic acid groups located on the surface of the fibers. The pH the paper sheet was made from was also found to affect profoundly the adsorption and retention characteristics of these compounds onto the lignocellulosic matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.