Abstract

The rapidly rising demand for refrigeration technologies, mainly in refrigeration and air conditioning, medical applications, and electronic component cooling, produced much more energy than required. Thermoelectric refrigeration is an innovative way to use additional energy to cool and reserve cooling. In this research, a photovoltaic-thermoelectric refrigeration system capable of sustaining vaccine storage within the limit of 2–8 °C has been established by experimentally optimizing its volume and performance. The design specification is to cool the volume using forced convection to the desired temperature range in less than 30 min and sustain retained heat for at least the next hour. The experimental research is divided into two stages: the first determines the optimal volume of vaccine storage under different testing conditions using only grid power, and the second analyses storage performance using solar energy through photo voltaic (PV) integration. The solar direct drive and the solar drive with battery support have been timed, revealing a holding period of 4 h, 46 min and 5 h, 29 min, respectively. The refrigerator's design criteria, prospective characteristics, and final design are all thoroughly highlighted. Finally, we conclude that this research will likely benefit the modeling and analysis of thermoelectric cooling systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.