Abstract
In this research, a photovoltaic-thermal collector assisted heat pump has been developed and tested its performance under the tropical climatic conditions of Malaysia. The refrigerants such as, R134a and R1234yf were selected based on its thermodynamic and thermo-physical properties. The temperature of the photovoltaic module was theoretically predicted under the influence of tube diameter, tube spacing and refrigerant mass flow rate. Further, the energy performance of the photovoltaic-thermal evaporator and the heat pump system are investigated experimentally. Finally, the economical feasibility of the photovoltaic-thermal collector evaporator was assessed for the period of 20 years. The results showed that, the tube spacing and diameter of the copper tubes used in the photovoltaic-thermal evaporator/collector using R134a and R1234yf were optimized to 80 mm and 12.7 mm, respectively. It was observed that, during the clear sunny day, the average photovoltaic module temperature was reduced to 30.9 °C under the influence of panel cooling using refrigerant. The output of the panel was enhanced by 21%–44% with increase in solar radiation from 400 W/m2 to 1000 W/m2. The coefficient of performance of the heat pump was varied from 4.8 to 6.84 with an average coefficient of performance of 5.8 during clear sunny days. The life cycle economic analysis indicated that, the photovoltaic-thermal collector evaporator assisted heat pump has a payback period of 3 years, whereas the reference photovoltaic system has a payback period of 8 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.