Abstract

We report on the growth and electro-optical studies of photovoltaic properties of GaAsP nanowires. Low density GaAsP nanowires were grown by Au assisted MOVPE on Si(001) substrates using a two step procedure to form a radial p–n junction. The STEM analyses show that the nanowires have cubic structure with the alloy composition GaAs0.88P0.12 in the nanowire core and GaAs0.76P0.24 in the shell. The nanowire ensembles were processed in the form of sub-millimeter size mesas. The photovoltaic properties were characterized by optical beam induced current (OBIC) and electronic beam induced current (EBIC) maps. Both OBIC and EBIC maps show that the photovoltage is generated by the nanowires; however, a strong signal variation from wire to wire is observed. Only one out of six connected nanowires produce a measurable signal. These strong fluctuations can be tentatively explained by the variation of the resistance of the nanowire-to-substrate connection, which is highly sensitive to the quality of the Si–GaAsP interface. This study demonstrates the importance of the spatially resolved charge collection microscopy techniques for the diagnosis of failures in nanowire photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.