Abstract

Double quantum dots (DQDs) have emerged as versatile and efficient absorbing light devices owing to their more adjusting parameters than the single QD’s. Using the system-reservoir theory, tunneling effect on the quantum photovoltaic properties is explored detailedly in a DQDs photocell. The results show that the quantum photovoltaic yields evaluated by the short-circuit current, open-circuit voltage and output power, are greatly enhanced by the electron tunneling effect between two adjacent QDs. Not only that, further discussion reveals that the redistribution of carriers due to the tunneling effect is responsible for the efficient quantum photovoltaic properties. And the robust tunneling effect can greatly reduce the passive impact caused by the energy mismatch, the role difference between the ambient temperature and tunneling effect is also clarified in the photovoltaic properties. Insights into tunneling effect between two adjacent QDs not only reveal the microscopic carriers transporting regime, but also may inspire some artificial strategies for efficient assembled QD arrays photocell in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.