Abstract
Rapid development of Photovoltaic (PV) power and its efficiency is resulting in significant power supply, global warming mitigation and economic benefits. However the power of PV station is highly affected by weather conditions. Therefore forecast of PV power is essential for planning and operation and management of power system. This paper describes the training, validation and application of cascade feed forward back propagation artificial neural network to predict PV power of 3 KW station installed at North China Electric Power University in Beijing. The input parameters for cascade feed forward neural network are meteorological parameters and the target parameter is real PV power to train the proposed network. Solar radiation, Temperature, Humidity, Wind speed are chosen as input parameters to train the model. Photovoltaic power for two days ahead is predicted with a well-trained cascade feed forward neural network. The results show that the proposed network can precisely compute and forecast the PV power of the test data with accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.