Abstract

In order to allow efficient planning of electric power system, the reliable prediction of photovoltaic power generation is very important. This paper proposes a new solar power probabilistic forecasting method based on dynamic weighting method, K-Nearest Neighbor (KNN) algorithm and quantile regression neural network (QRNN). Firstly, a new dynamic weighting method is used to tune the optimal weights of meteorological factors dynamically. Then based on the optimal weighted Euclidean distance metric method, KNN algorithm is used to find the similar examples more accurately. Finally, QRNN model is established to obtain different quantiles and approximately estimate the probability distribution of solar power output. The data from IEEE Working Group on Energy Forecasting is used to valid ate the effectiveness of proposed method and the experimental results show that the proposed model has reliable and accurate prediction ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.