Abstract

The presence of toxic lead (Pb) remains a major obstruction to the commercial application of perovskite solar cells. Although antimony (Sb)-based perovskite-like structures A3M2X9 can display potentially useful photovoltaic behavior, solution-processed Sb-based perovskite-like structures usually favor the dimer phase, which has poor photovoltaic properties. In this study, we prepared a layered polymorph of Cs3Sb2I9 through solution-processing and studied its photovoltaic properties. The exciton binding energy and exciton lifetime of the layer-form Cs3Sb2I9 were approximately 100 meV and 6 ns, respectively. The photovoltaic properties of the layered polymorph were superior to those of the dimer polymorph. A solar cell incorporating the layer-form Cs3Sb2I9 exhibited an open-circuit voltage of 0.72 V and a power conversion efficiency of 1.5%-the highest reported for an all-inorganic Sb-based perovskite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.