Abstract
This paper presents data-driven models for photovoltaic module temperature prediction and analyzes the relation and effects of ambient conditions to module temperature. A total of 12 different machine learning and regression algorithms are implemented, with a large experimental dataset of 345,600 × 7. Prior to implementing those algorithms, data preprocessing is performed to prepare the datasets and determine the informative attributes for the models. Using PCA with module temperature as target to predict, the selected features for models' inputs were determined to be ambient temperature, solar radiation, wind speed, and relative humidity, and each algorithm is cross-validated and tuned with optimal performance parameters. Results show that while relative humidity is more likely to introduce less information to the model, other aforementioned features are the important parameters to predict the module temperature. While for linear modeling, LASSO algorithm provided the best performance, the ANN model demonstrated the best overall results as it produced the most accurate predictions with lowest errors. A similar performance is attained by the proposed non-linear model, KRR and Gradient Boosting algorithm, with a slight advantage to the KRR model. Furthermore, in comparison to experimental data, the ANN model and the proposed non-linear model provided an R2 values of 0.986 and 0.981, with a MAE of 0.982 and 1.476, and MSE of 2.181and 3.464, respectively. Moreover, the proposed model supplied accurate results when compared to models from literature in an out-of-sample testing, it also proven to be robust and accurate when used to predict the PV power output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.