Abstract

Mismatch losses is a major issue in the photovoltaic (PV) system and are mainly caused by partial shading; largest mismatch losses are caused by sharp shadows. These shadows are a typical problem for rooftop and residential installations. In large-scale PV plants, partial shading is mostly caused by moving clouds which produce gentle irradiance transitions causing typically only minor irradiance differences between adjacent PV modules.This paper presents a study of the mismatch losses of PV arrays with various layouts and electrical configurations during around 27,000 irradiance transitions identified in measured irradiance data. The overall effect of the mismatch losses caused by moving clouds on the energy production of PV plants was also studied. The study was conducted using a mathematical model of irradiance transitions and an experimentally verified MATLAB/Simulink model of a PV module.The relative mismatch losses during the identified irradiance transitions ranged from 1.4% to 4.0% depending on the electrical configuration and layout of the PV array. The overall effect of the mismatch losses caused by moving clouds on the total electricity production of PV arrays was about 0.5% for the PV array with strings of 28 PV modules and substantially smaller for arrays with shorter strings. The proportions of the total mismatch losses caused by very dark or highly transparent clouds were small. About 70% of the total mismatch losses were caused by shadow edges with shading strengths ranging between 40% and 80%. These results indicate that the mismatch losses caused by moving clouds are not a major problem for large-scale PV plants. An interesting finding from a practical point of view is that the mismatch losses increase the rate of power fluctuations compared to the rate of irradiance fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.