Abstract

In recent years, Bulk heterojunction organic solar cells (BHJ OSCs) based small molecules take leading position of industrialization for their considerable opto-electronic properties and uncomplicated fabrication process. Materials based on cyclopentadithiophene (CPDT) have been widely used thanks to their interesting structural and electronic characteristics. Here we report a combined experimental and theoretical investigation of a CPDT-based material namely 6,6'-(2,5-bis (hexyloxy)-1,4-phenylene) bis(2-methyl -4H- cyclopenta [2,1-b:3,4-b'] dithiophen-4-one) (CPDT-alt-BHP) as donor small molecule in a BHJ OSC. The synthesized molecule shows a rigid and planar structure with small band gap energy. The electronic properties have been investigated by means of Density Functional Theory (DFT) at B3LYP/6-31g(d) level of theory. The studied molecule displayed an optical absorption in the visible region with λ_max=404 nm. Transition density matrix (TDM) plot was carried out to get insight into the hole-electron coherences at the first excited state. The photovoltaic parameters of CPDTBHP:[70]PCBM system were simulated using wxAMPS software. The designed BHJ OSC exhibited respectable fill factor (FF) of 81.13%, short-circuit current density (Jsc) of 6.089 mA cm-2 and power conversion efficiency (PCE) of 4.922%. The studied compound offers significant structural and optoelectronic properties that could be enhanced via judicious molecular tuning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.