Abstract
In the rapidly evolving field of solar energy, Photovoltaic (PV) manufacturers are constantly challenged by the degradation of PV modules due to localized overheating, commonly known as hotspots. This issue not only reduce the efficiency of solar panels but, in severe cases, can lead to irreversible damage, malfunctioning, and even fire hazards. Addressing this critical challenge, our research introduces an innovative electronic device designed to effectively mitigate PV hotspots. This pioneering solution consists of a novel combination of a current comparator and a current mirror circuit. These components are uniquely integrated with an automatic switching mechanism, notably eliminating the need for traditional bypass diodes. We rigorously tested and validated this device on PV modules exhibiting both adjacent and non-adjacent hotspots. Our findings are groundbreaking: the hotspot temperatures were significantly reduced from a dangerous 55 °C to a safer 35 °C. Moreover, this intervention remarkably enhanced the output power of the modules by up to 5.3%. This research not only contributes a practical solution to a longstanding problem in solar panel efficiency but also opens new pathways for enhancing the safety and longevity of solar PV systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.