Abstract

Photovoltaic (PV) properties of bismuth ferrite (BFO) and barium titanate (BTO) multilayered ferroelectric BFO/BTO/BFO/BTO thin film structure deposited on Pt/Ti/SiO2/Si substrates using chemical solution deposition technique are presented. X-ray diffraction analysis confirms pure phase polycrystalline nature of deposited perovskite multilayered structures. Simultaneously both distorted rhombohedral (R3c) and tetragonal phases (P4mm) of the respective BFO and BTO components are also well retained. The ferroelectric sandwiched structures grown on fused quartz substrates exhibit high optical transmittance (~70%) with an energy band gap 2.62eV. Current–voltage characteristics and PV response of multilayered structures is determined in metal-ferroelectric-metal (MFM) capacitor configuration. Considerably low magnitude of dark current density 1.53×10−7A at applied bias of 5V establish the resistive nature of semi-transparent multilayered structure. Enhanced PV response with 40nm thin semitransparent Au as top electrode is observed under solid-state violet laser illumination (λ – 405nm, 160mW/cm2). The short circuit current density and open circuit voltage are measured to be 12.65µA/cm2 and 1.43V respectively with a high retentivity. The results obtained are highly encouraging for employing artificial multilayered engineering to improve PV characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.