Abstract
The photovoltaic properties of organic solar cells based on hybrid poly [2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylen) (MEH-PPV) and anatase titanium dioxide (TiO2) nanoparticles as a function of TiO2 concentration were investigated. Synthesis of TiO2 nanoparticles was performed by sol-gel immerses heated method and been used as a filler in MEH-PPV polymer matrix. The hybrid MEH-PPV: TiO2 solar cells exhibited increased in light absorption and power conversion efficiency than the pristine organic solar cell. By further optimizing the concentration of TiO2 nanoparticles, the short-circuit current of the hybrid MEH-PPV: TiO2 was reached up to 0.004823 (mA/cm2) and the corresponding power conversion efficiency was 0.000378% was obtained under Air Mass 1.5 illumination which was more than 80% higher compared to the device without TiO2 nanoparticles. This indicates by embedded TiO2 nanoparticles in MEH-PPV matrix encouraging the charge transportation in the active layer of organic solar cells device.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.