Abstract

In semiconductors under tightly-focused photocarrier excitation, the lateral variation of carrier concentration induces a lateral variation of photovoltage. In chemically-passivated p-type GaAs films at 300 K, we show experimentally and theoretically that the photovoltage lateral dependence is able to block the photoelectron diffusion, thus reducing the effective charge diffusion constant by a factor of ≈5 with respect to surface-free conditions and producing a self-trapping of photoelectrons. This effect is not present for surface-free and for oxidized samples, for which the photovoltage magnitude is strongly reduced. The photovoltage lateral variation also induces a coupling between charge and spin diffusion. Because of this coupling, the effective spin diffusion constant is significantly larger than the effective charge one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call