Abstract
The photovoltage of perovskite solar cells (PSCs) was studied over a wide range of light intensities, showing changes from pristine to light-soaking (LS) conditions, explained using a specific model of spatial charge distribution. Migration of ions and vacancies under photovoltage conditions results in localized charge redistribution manifested as positive charge accumulation at the TiO2 or TiO2–MgO interlayer–perovskite interface, signifying photoinduced interfacial upward band bending. Consequentially, generation of an electrostatic potential (Velec) and an increase in interfacial recombination rate are confirmed. The magnitude and effect of Velec and interfacial recombination on the photovoltage depend on the illumination intensity and on the LS duration. PSCs with mesoporous Al2O3 showed similar changes, validating the role of the compact TiO2. Faster generation and a gradual increase of Velec are apparent under LS, which expresses the constant migration of ions and vacancies toward the interface. The...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.