Abstract
The circadian system allows plants to coordinate metabolic and physiological functions with predictable environmental variables such as dusk and dawn. This endogenous oscillator is comprised of biochemical and transcriptional rhythms that are synchronized with a plant's surroundings via environmental signals, including light and temperature. We have used chlorophyll fluorescence techniques to describe circadian rhythms of PSII operating efficiency (Fq'/Fm') in the chloroplasts of Arabidopsis thaliana. These Fq'/Fm' oscillations appear to be influenced by transcriptional feedback loops previously described in the nucleus, and are induced by rhythmic changes in photochemical quenching over circadian time. Our work reveals that a family of blue photoreceptors, phototropins, maintain robust rhythms of Fq'/Fm' under constant blue light. As phototropins do not influence circadian gene expression in the nucleus our imaging methodology highlights differences between the modulation of circadian outputs in distinct subcellular compartments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.