Abstract

During summer thermal stratification, a broad transition zone with hypoxic conditions is formed in meromictic ferruginous Lake Kuznechikha between the thermocline and the main gradient of water mineralization. In this zone, the chemical composition of water undergoes an ecologically significant transformation due to overlapping gradients of nutrient concentrations and redox conditions. We present an analysis of a strongly vertically structured community of prokaryotic and eukaryotic phototrophs developing in the lake as a whole and especially in the transition zone. In early summer 2009, a sequence of phototrophic organisms with depth in order Chlorophyceae → Chromatiales → Chloroflexales → Euglenales → Chlorobiales was observed in the transition zone, while cyanobacteria were almost completely absent. Biomass maximum of anoxygenic phototrophic bacteria was located between the peaks of phototrophic picoplankton and euglenoids. Such a coexistence of oxygenic and anoxygenic phototrophs in a wide range of depths is highly unusual and sharply distinguishes Lake Kuznechikha from waterbodies with sulphide-containing monimolimnion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.