Abstract

The P (Pi as KH2PO4 and Po as ATP) removal processes by phototrophic periphyton were investigated by determining the removal kinetics, metal content (Ca, Mg, Al, Fe, Cu, and Zn) of the solution and P fractions (Labile-P, Fe/Al-P, Ca-P, and Res-P) within the periphyton. Results showed that the periphyton was able to remove completely both Pi and Po after 48h when periphyton content was greater than 0.2gL−1 (dry weight). The difference between Pi and Po removal was the conversion of Po into Pi by the periphyton, after that the removal mechanism was similar. The P removal mechanism was mainly due to the adsorption on the surfaces of the periphyton, including two aspects: i) the adsorption of PO43− onto metal salts such as calcium carbonate (~50%) and ii) complexation between PO43− and metal cations such as Ca2+ (~40%). However, this bio-adsorptional process was significantly influenced by the extracellular polymeric substance (EPS) of periphyton, water hardness, initial P concentration, temperature and light intensity. This study not only deepens the understanding of P biogeochemical process in aquatic ecosystem, but provides a potential biomaterial for combining phosphorous removal and recovery from non-point source wastewaters, especially around salt-soil zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call