Abstract

Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C-phycocyanin (C-PC) and other valuable chemicals like carotenoids and γ-linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C-PC production in NaCl-tolerant mutant of Spirulina platensis. In this study,highest C-PC (147mg·L-1 ) and biomass (2.83g·L-1 ) production was achieved when a NaCl-tolerant mutant of S.platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S.platensis and its NaCl-tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C-PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μmax ) for NaCl-tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half-saturation constant (Ks ), indicating that this strain could grow well at high concentration of NaNO3 . C-PC production rate (Cmax ) in mutant cells increased by 12.2% at almost half the value of Ks as compared to its wildtype counterpart. Moreover, the inhibition constant (Ki ) value was 207.85% higher in NaCl-tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C-PC even at high concentrations of NaNO3 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.