Abstract

We analyzed photosynthetic pigments, total organic carbon (TOC), biogenic silica, and Mo, a redox-sensitive element, in 210Pb-dated sediment cores to reconstruct the historical changes in primary productivity and anoxia in the central basin of Lake Hamana, a brackish lake in Shizuoka Prefecture, Japan, over the last ∼250 years. The algal photosynthetic pigments we analyzed included chlorophyll a (and its derivatives), chlorophyll b (and its derivatives), and carotenoids such as β-carotene, lutein, zeaxanthin, diatoxanthin, fucoxanthin, alloxanthin, and α-carotene. Marker pigments for phototrophic sulfur bacteria were also recorded, including okenone and bacteriopheophytin a, originating from Chromatium (a genus of purple sulfur bacteria), and isorenieratene and bacteriochlorophylls e1, e2 and e3 (and corresponding bacteriopheophytins) from brown Chlorobium (a brown-colored group of green sulfur bacteria). The occurrence of these pigments throughout the length of all cores indicates that the anoxia in Lake Hamana has existed over at least the last ∼250 years. The indicators related to primary productivity – TOC and pigments of aerobic and anaerobic phototrophs – and an indicator of anoxia, Mo, increased after ∼1860, indicating that productivity had increased in both the oxic and anoxic (sulfidic) zones. The depth profiles of the indicators in the sediment cores showed that among phototrophic sulfur bacteria, Chromatium preferentially increased relative to brown Chlorobium when the lake productivity was high, and hence high anoxia existed in the lake. This can be explained by a shallowing of the oxic/anoxic boundary zone due to changes in temporal and/or spatial extents of seasonal anoxia, which made the light intensity in the upper anoxic zone high enough for Chromatium to grow. The upper Chromatium layer may absorb the wavelengths of light that favor the growth of brown Chlorobium in the water column, resulting in a relative decrease in brown Chlorobium. During the 1950s, the trends among the indicators changed significantly. This change is attributed to the construction of training walls, built to direct tidal currents into the lake, on the Imagire-guchi Channel, the sole inlet of seawater to the lake, during 1954–1956, and the resultant increases of seawater intrusion and lake salinity. A decrease in okenone and bacteriopheophytin a, or in okenone/isorenieratene ratio, after ∼1960 accompanying a decrease in Mo, is attributed to a deepening of the anoxic zone, where the light intensity became too low for growth of Chromatium, more light-demanding than the brown Chlorobium. A decrease of zeaxanthin (cyanobacteria) after ∼1960 relative to lutein (green algae) and diatoxanthin (diatoms and dinoflagellates) indicated a change in algal assemblage, presumably due to the increased salinity. Principal component analysis with a data set of total algal carotenoids, okenone, isorenieratene, and Mo also suggested that a major change occurred around the 1950s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call