Abstract
The photochemical deprotection of structurally engineered o-nitrobenzylphosphate-caged hairpin nucleic acids is introduced as a versatile method to evolve constitutional dynamic networks, CDNs. The photogenerated CDNs, in the presence of fuel strands, interact with auxiliary CDNs, resulting in their dynamically equilibrated reconfiguration. By modification of the constituents associated with the auxiliary CDNs with glucose oxidase (GOx)/horseradish peroxidase (HRP) or the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) cofactor, the photogenerated CDN drives the orthogonal operation upregulated/downregulated operation of the GOx/HRP and LDH/NAD+ biocatalytic cascade in the conjugate mixture of auxiliary CDNs. Also, the photogenerated CDN was applied to control the reconfiguration of coupled CDNs, leading to upregulated/downregulated formation of the antithrombin aptamer units, resulting in the dictated inhibition of thrombin activity (fibrinogen coagulation). Moreover, a reaction module consisting of GOx/HRP-modified o-nitrobenzyl phosphate-caged DNA hairpins, photoresponsive caged auxiliary duplexes, and nickase leads upon irradiation to the emergence of a transient, dissipative CDN activating in the presence of two alternate auxiliary triggers, achieving transient operation of up- and downregulated GOx/HRP biocatalytic cascades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.