Abstract

Recently, femtosecond laser pulses have been utilized for the targeted introduction of genetic matter into mammalian cells. This rapidly expanding and developing novel optical technique using a tightly focused laser light beam is called phototransfection. Extending previous studies [Stevenson et al., Opt. Express 14, 7125-7133 (2006)], we show that femtosecond lasers can be used to phototransfect a range of different cell lines, and specifically that this novel technology can also transfect mouse embryonic stem cell colonies with approximately 25% efficiency. Notably, we show the ability of differentiating these cells into the extraembryonic endoderm using phototransfection. Furthermore, we present two new findings aimed at optimizing the phototransfection method and improving applicability: first, the influence of the cell passage number on the transfection efficiency is explored and, second, the ability to enhance the transfection efficiency via whole culture treatments. Our results should encourage wider uptake of this methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.