Abstract

The search of effective anti-stroke neuroprotectors requires various stroke models adequate for different aspects of the ischemic processes. The photothrombotic stroke model is particularly suitable for the study of cellular and molecular mechanisms underlying neurodegeneration, neuroprotection, and neuroregeneration. It is a model of occlusion of small cerebral vessels, which provides detailed study of molecular mechanisms of ischemic cell death and useful for search of potential anti-stroke agents. Its advantages include well-defined location and size of ischemic lesion that are determined by the aiming of the laser beam at the predetermined brain region; easy impact dosing by changing light intensity and duration; low invasiveness and minimal surgical intervention without craniotomy and mechanical manipulations with blood vessel, which carry the risk of brain trauma; low animal mortality and prolonged sensorimotor impairment that provide long-term study of stroke consequences including behavior impairment and recovery; independence on genetic variations of blood pressure and vascular architecture; and high reproducibility. This review describes the current application of the photothrombotic stroke model for the study of cellular and molecular mechanisms of stroke development and ischemic penumbra formation, as well as for the search of anti-stroke drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.