Abstract

In this work, the photothermal interactions in semiconductor microbeams during the photo-thermo-elastic process have been investigated using the generalized photothermal theory. The proposed mathematical model is constructed based on the Euler–Bernoulli model, the heat equation with two-phase lag and coupled plasma wave equation that indicates the prediction of thermal, elastic and photovoltaic effects in the microbeam resonators. Based on the introduced model, the dynamic influence of thermoelastic photovoltaic microbeam resting on an elastic foundation medium with two parameters has been studied. The Winkler foundation parameter is one of these parameters while the second is the shear foundation parameter. In the field of Laplace transform, the governing equations have been solved while the inverse transforms are found numerically using a tried-and-true approximation technique based on Fourier transform series. The numerical calculations of thermophysical field variables have been discussed and graphically presented. The effects of the magnetic field, Winkler and shear foundation parameters, and lifetime of photogenerated electron have been investigated and studied in detail. Comparisons have been made between the proposed model and previous models that have been derived as special cases from the presented results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call