Abstract

Bacterial biofilm seriously impedes the healing of infected wound, remaining a major challenge in wound repair. Antibiotic-free antibacterial strategies based on nanotechnology are emerging as promising tools to combat bacterial infections. Here, halloysite nanotube (HNT), as a natural clay mineral, was employed to fabricate a multifunctional platform (designated as HNTs@CuS@PDA-Lys) through a layer-by-layer strategy for treating bacterial infections by utilizing synergistic lysozyme (Lys)-photothermal therapy (PTT). Specifically, amino-modified HNTs were first decorated with copper sulfide (CuS), followed by coated with a polydopamine (PDA) layer, then functionalized with antimicrobial enzyme Lys onto the surface of PDA via cation-π interactions. The as-prepared HNTs@CuS@PDA-Lys at a low dose (200 μg/mL) exhibited excellent synergistic Lys-photothermal bactericidal activity against Escherichia coli (E. coli) (100.0 ± 0.2 %) and Staphyloccocus aureus (S. aureus) (99.9 ± 0.1 %), eliminated 75.9 ± 2.0 % of S. aureus biofilm under near-infrared (NIR) irradiation (808 nm, 1.5 W/cm2). In vivo experiments using a S. aureus-infected rat model showed HNTs@CuS@PDA-Lys could rapidly kill bacteria and accelerate wound healing process. Overall, this multifunctional nanoplatform combines the advantages of PTT and Lys, providing a cost-efficient, environmental friendly strategy for bacterial and biofilm eradication, demonstrating the potential applications in the field of biomedicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.