Abstract

The photothermal transduction efficiencies of group 4 metal nitrides, TiN, ZrN, and HfN, at λ = 850 nm are reported, and the performance of these materials is compared to an Au nanorod benchmark. Transition metal nitride nanocrystals with an average diameter of ∼15 nm were prepared using a solid-state metathesis reaction. HfN exhibited the highest photothermal transduction efficiency of 65%, followed by ZrN (58%) and TiN (49%), which were all higher than those of the commercially purchased Au nanorods (43%). Computational studies performed using a finite element method showed HfN and Au to have the lowest and highest scattering cross section, respectively, which could be a contributing factor to the efficiency trends observed. Furthermore, the changes in temperature as a function of illumination intensity and solution concentration, as well as the cycling stability of the metal nitride solutions, were studied in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call