Abstract

In this work, photothermal-responsive graphene oxide (GO)-based membranes intercalated by multiwalled carbon nanotubes (MWCNTs) were prepared by polydopamine (PDA) modification and 2-ureido-4[1H]-pyrimidinone (UPy) assembly process. Benefited from the high photothermal conversion ability of PDA and reversible UPy dimer, the permeation flux of the GO-based membrane can be easily modulated with a high gating ratio under near-infrared light switched off and on. Nanochannels created by the intercalation of MWCNTs into GO layers greatly increase water permeation without sacrificing the rejection of dye molecules in water (96.2% for methyl orange, 98.9% for rhodamine B, and 99.7% for Coomassie brilliant blue). The composite membranes also exhibit trade-off between rejection of heavy metal ions (Cu2+ and Fe3+). Moreover, such GO-based membranes show high pH stabilities, which show great potential in the water purification applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.