Abstract

We describe photothermal operation of nanoelectromechanical systems (NEMS) in ambient atmosphere. Using a tightly focused modulated laser source, we have actuated the out-of-plane flexural resonances of bilayered doubly clamped beams. The optically detected displacement profiles in these beams are consistent with a model where the absorbed laser power results in a local temperature rise and a subsequent thermally induced bending moment. The described technique allows probing and actuation of NEMS with exquisite spatial and temporal resolution. From a device perspective, the technique offers immense frequency tunability and may enable future NEMS that can be remotely accessed without electronic coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call