Abstract

A measurement system for quantitative registration of transient and irreversible lens effects in DUV optics induced by absorbed UV laser radiation was developed at the Laser-Laboratorium Gottingen. It is based upon a strongly improved Hartmann-Shack wavefront sensor with an extreme sensitivity of ~λ/10000 RMS @ 193nm, accomplishing precise online monitoring of wavefront deformations of a collimated test laser beam transmitted through the laser-irradiated site of a sample. Caused by the temperature dependence of the refractive index as well as thermal expansion and compaction, the initially plane wavefront of the test laser is distorted into a convex or concave lens, dependent on sign and magnitude of index change and expansion. The observed wavefront distortion yields a quantitative measure of the absorption losses in the sample. Some results for fused silica and CaF 2 are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.