Abstract
Enzyme-powered nanomotors with active motion have opened a new door in design of biocompatible drug delivery systems for cancer treatment. However, the movement of them still faces huge challenges due to the viscous physiological environment. To address this issue, we developed a photothermal interference (PTI) urease-modified polydopamine (PDA) nanomotor (PDA@HSA@Ur) for deeper-penetration of doxorubicin (DOX) through improved motion. The urease-powered nanomotors can generate self-propulsion via catalyzing decomposition of biocompatible urea into carbon dioxide and ammonia through a self-diffusiophoretic. Meanwhile, when exposed to near-infrared (NIR) laser, the increased temperature of tumors microenvironment from nanomotors can not only induce tumor cell apoptosis but also enhance the biocatalytic activity of urease to improve the motion of nanomotors. Compared to the nanomotors propelled only by urea, PTI nanomotors realize highly effective self-propulsion with improved cellular uptake in vitro. Furthermore, PTI nanomotors display an enhanced anticancer efficiency owing to synergistic photothermal and chemotherapy effect. The PTI reported in this manuscript is the first to provide a thermally assisted method for highly efficient cancer treatment with urease-powered nanomotors in a complex physiological environment through enhanced motion and synergistic therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.