Abstract

The dispersed gold nanoparticles (AuNPs) have weak photothermal effect in near-infrared (NIR) region. After the addition of cysteine, the AuNPs are aggregated due to the electrostatic interaction and then exhibited strong photothermal effect. At present of copper ion (Cu2+), the cysteine was catalytically oxidized into cystine, leading to the inhibition of the aggregation of AuNPs and the photothermal effect decreased. Based on this, a simple photothermal assay can be developed for Cu2+ detection using a common thermometer as readout. The change of the temperature (ΔT) of the system has a linear relationship with Cu2+ in the range of 10–300 nM with a detection limit of 7.4 nM (S/N = 3). Furthermore, through labeling the detection antibody in immunoassay with CuO nanoparticles as the source of Cu2+, a convenient photothermal immunoassay can be developed. Carcinoembryonic antigen (CEA), an important biomarker for cancer screening, was chosen as the model target because the rise of CEA level is widely present in cancer blood serum. Under the optimized conditions, ΔT has a linear relationship with CEA concentration in the range of 3.0–48.0 ng/mL. The detection limit is 1.3 ng/mL. The proposed method had been applied to detect CEA in serum samples with good agreement with the reference method used in hospital.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call